الجمهورية الجزائرية الديمقراطية الشعبية

السنة الدراسية: 2018 / 2018

ثانوبة أبو بكر بلقايد - بئر الجير وهران

المدة: 4 ساعات (17 ماي 2018)

الشكل 1

الأقسام: 3 رباضي + تقني رباضي

الامتحان التجريبي في العلوم الفيزيائية

على المترشح اختيار أحد الموضوعيين التاليين

الموضوع الأول

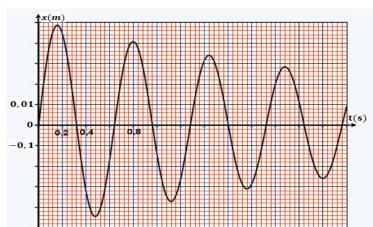
الجزء الأول: (14 نقطة)

التمرين الأول (4 نقط):

نابض مرن حلقاته غير متلاصقة و ثابت مرونته K=20~N/m مثبت من طرفه العلوي و بطرفه السفلي نربط جسم نقطى صلب كتلته $\mathbf{m} = 200~\mathbf{g}$ ، في حالة اهمال الاحتكاكات و مقاومة الهواء

و نأخذ $g = 9,81 \, \text{m/s}^2$. تدرس الحركة بالنسبة للمعلم الممثل في الشكل المرتبط بالمعلم الأرضى الذي نعتبره غاليليا .عند اللحظة t = 0 ندفع الجسم الصلب نحو الأسفل بسرعة ابتدائية

$$v_0=0.50rac{m}{s}$$
 حيث $\overrightarrow{v_0}=v_0$. \overrightarrow{i}

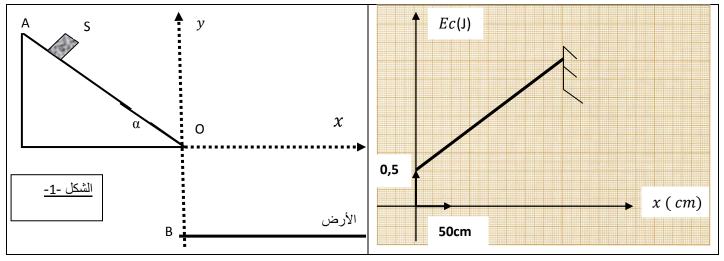

- 1. أوجد قيمة استطالة النابض Δl_{e} عند توازن .
- 2. أوجد المعادلة التفاضلية التي تحققها الفاصلة خلال الزمن.
- 3. أكتب العبارة الحرفية لحل المعادلة التفاضلية $\chi(t)$ ثم بين أن قيمة كل من الثابتين

$$Xm=0.05 m$$
 , $\varphi=-\frac{\pi}{2}$

- 4. أوجد العبارة الحرفية للدور الذاتي T_0 و عرفه .
- مثل بيانيا و كيفيا (بدون اختيار سلم الرسم) و بشكل واضح تغيرات (χ (χ) مثل بيانيا و كيفيا (بدون اختيار سلم الرسم) مثل بيانيا و
 - 6. ما هو نمط الاهتزازت
- $x\left(t
 ight)$ في الواقع عند اجراء التجربة بنفس الشروط الابتدائية و بواسطة برمجية خاصة نسجل البيان.
 - علل سبب تناقص السعة
 - ما هو نمط الاهتزازات
 - يعبر عن شبه الدور T في هذه الحالة بـ

$$\Gamma = \frac{T_0}{\sqrt{1 - \left(\frac{\mu \cdot T_0}{4\pi \cdot m}\right)^2}}$$

 μ حدد قيمة معامل التخامد


التمرين الثاني (7 نقط)

جسم صلب من الرخام يحتوي على كربونات الكالسيوم $CCO_{3(s)}$ ، نأخذ منه عينة كتلتها m ثم نشكل جسم صلب نقطي (S) . ناخذ منه عينة كيميائيا و ندرس الجسم الصلب فيزيائيا .

الجزء الأول: (3.5 نقط)

نعتبر الجسم الصلب (S) كتلته m=250 g و ندفعه من الموضع V_A بسرعة V_A كما هو موضح في الشكل M=250 و ندفعه من الموضع ومستو مائل خشن بوجود احتكاكات تمثل بقوة M=250 موازية و معاكسة لجهة الحركة طوله M=250 و ترتفع النقطة M=250 عن سطح الأرض بM=250 بواسطة تجهيز مناسب و برمجيته نسجل تغيرات الطاقة الحركية بدلالة المسافة المقطوعة.

 $lpha=30^\circ$ فيعطى البيان (الشكل 2) . يعطى

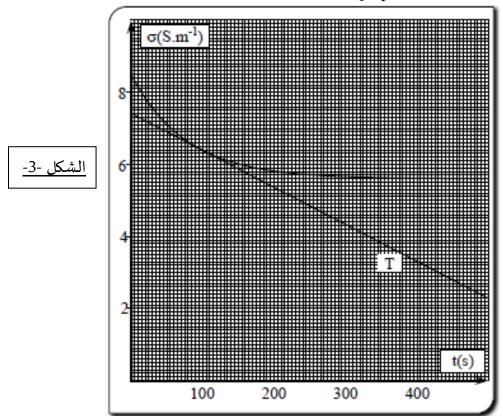
- 1. بتطبيق القانون الثاني لنيوتن ، في معلم عطالي . أوجد العبارة الحرفية للتسارع و ما هي طبيعة الحركة ؟
 - 2. بالاستعانة بالبيان ، أوجد قيمة التسارع و شدة قوة الاحتكاك .
 - 3. عند مغادرة الجسم المستوي المائل ندرس حركة الجسم في المعلم الممثل في الشكل
 - $v_x(t)$; $v_y(t)$ ما هي طبيعة حركة الجسم على المحورين؟ و استنتج المعادلتين الزمنيتين $v_x(t)$
 - أوجد قيمة المدى الأفقي
 - أوجد مدة الحركة من لحظة انطلاقه الى وصوله الأرض
 - $_{\chi}(t)$; $v_{y}(t)$ باختیار سلم رسم مناسب مثل بیانیا •

الجزء الثاني: (3.5 نقط)

نأخذ العينة من الرخام و نجعلها مسحوق كتلتها m=1,3 g و نضعها في كأس بيشر و عند لحظة نعتبرها مبدأ الأزمنة نفرغ حجما V=200 mL من محلول مائي لحمض كلور الهيدروجين U=1,3 تركيزه المولي V=200 mL الكيميائي التالى:

$$CaCO_{3(S)} + 2H_3O_{(aq)}^+ \longrightarrow Ca_{(aq)}^{2+} + CO_{2(g)}^+ 3H_2O_{(aq)}^+$$

و نتابع هذا التحول عن طريق قياس الناقلية في لحظات مختلفة فنحصل على البيان الممثل في الشكل 3 ، و تعطى العبارة الحرفية للناقلية النوعية في لحظة (t):


$$\sigma = 8,5-290 \text{ x}$$

حيث : التقدم بالـ (mole) و σ بـ (S . m^{-1}) و يعطى :

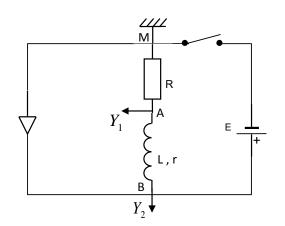
• M(CaCO₃) = 100 g.mol¹ •

 $\lambda \ (Ca^{2+})=12.0 \ mS.m^2.mol^1 \ ; \lambda (H_2O^+)=35.0 \ mS.m^2.mol^1 \ ; \lambda (Cl^-)=7.5 \ mS.m^2.mol^{1_0}$

- $C=0.2\ mol.\ L^{-1}$: بين أن التركيز المولي لمحلول حمض كلور الهيدروجين قيمته . $C=0.2\ mol.\ L^{-1}$
- 2. أوجد بيانيا قيمة التقدم الأعظمي x_{max} و بين أن كربونات الكالسيوم $caco_3$ هو المتفاعل المحد
 - 3. أحسب النسبة المئوبة الكتلية لكربونات الكالسيوم في العينة .
 - $t = 100 \, s$ أحسب السرعة الحجمية للتفاعل عند اللحظة 4.
- 5. عند اللحظة t=2 . $t_{1/2}$ ، نأخذ حجما من المزيج التفاعلي قدره t=2 . و نضيف له حجما من الماء البارد و نضيف pH . أحسب قيمة ال t=10~mL الموافقة . t=10~mL

التمرين الثالث: (3 نقط)

نركّب الدارة المقابلة:


 $E\!=\!12V$ مولّد مثالي للتوترات قوّته المحرّكة الكهربائية

. r وشیعة ذاتیتها L ومقاومتها

 $R+r=120\Omega$ ناقل أومي غير تحريضي مقاومته ، حيث

صمّام مثالي ، وقاطعة مقاومتها مهملة .

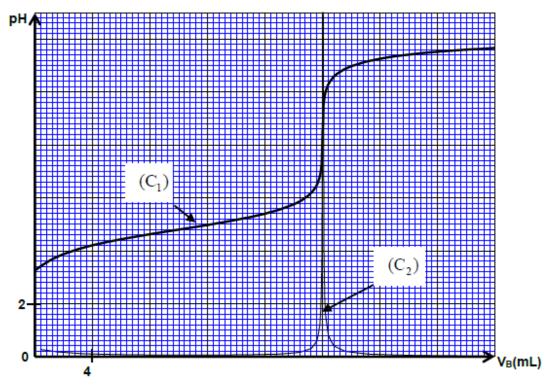
راسم اهتزاز رقمي موصول كما هو موضح على الدارة .

1 – نغلق القاطعة عند اللحظة t=0 ، فيمرّ في الدارة تيار شدته من الشكل :

. ميث ته هو ثابت الزمن . أعط عبارة lpha بدلالة مميّزات الدارة بدون أي برهان . $i=lphaigg(1-e^{-rac{t}{ au}}igg)$

- أ / احسب شدّة التيار I في النظام الدائم .
- ب/مثّل شكلي التوتّرين المشاهدين على شاشة راسم الاهتزاز.
- ج/ما هو المدخل الذي يمكن استعماله لمشاهدة تطور شدة التيار في الدارة؟
 - د/كيف نربط راسم الاهتزاز لمشاهدة التوتر u_{BA} ؟ مثّل شكل هذا التوتر .
 - . t=0 المحظة عند اللحظة t=0
 - أ / مثّل جهة التيار في الدارة .
 - t=0 التيار عند اللحظة هذا التيار عند اللحظة وt=0
 - . u_{BA} ج مثّل شكل التوتّر
- . au د / جدْ علاقة بين t=0 عند t=0 ، ثم عبّر عن ميل المماس للبيان t=0 عند t=0 بدلالة t=0
 - ه / احسب ثابت الزمن علما أن $\frac{di}{dt} = -20 A s^{-1}$ ، ثم استنتج ذاتية الوشيعة .
 - و/احسب قيمتي r و R علما أن عند اللحظة t=0 يكون t=0 علما أن عند اللحظة وt=0

الجزء الثاني: تمرين تجريبي (6 نقط)


ندرس معايرة حمض عضوي و تصنيع أستر

الجزء الأول:

نحضر محلولا مائيا (S_A) لحمض الايثانوبك CH_3COOH حجمه V=1 و تركيزه المولى الخمض النقى الحمض النقى كتلتها m في الماء المقطر.

 $Na^+ + {
m HO}^-$ و نضعها في بيشر و نعايرها بواسطة محلول مائي ($S_{
m B}$) لهيدروكسيد الصوديوم $V_A = 20~mL$. $C_{
m B}=2$. $10^{-2}{
m mol/L}$ تركيزه المولى

- 1. أكتب معادلة التفاعل المنمذج لهذه المعايرة
- 2. أعط البروتكول التجريبي الموافق لهذه المعايرةو الشرح.
- $\frac{d\,pH}{d\,V_{\rm D}}=f\left(\,V_{B}\,
 ight)$ و البيان $pH=f\left(\,V_{B}\,
 ight)$ و البيان مكنت من رسم البيان (3
 - عرف التكافؤ ثم عين احداثيات نقطة التكافؤ.
 - أوجد قيمة الكتلة m اللازمة لتحضير المحلول •
 - بين أن تفاعل حمض الايثانوبك مع الماء تفاعل محدود
- $V_B
 eq 0$ مع $V_B \cdot 10^{-pH} = K_A \cdot (V_{BE} V_B)$ مع أثبت بالنسبة لحجم $V_B \cdot V_B \cdot 10^{-pH}$ مع $V_B \cdot V_B \cdot 10^{-pH}$. (CH_3COOH/CH_3COO^-) ثم استنتج قيمة pKa للثنائية
 - $m V_B=rac{V_{BE}}{2}$ بين أنه عند نصف التكافؤ

الجزء الثاني:

نحضر خليطا يتكون من حمض الايثانويك كتلته $m_1=6\ g$ مع كحول البنزيلي (بنزانول $C_6H_5-CH_2-OH$ كتلته ي في ظروف تجرببية معينة ، نسخن الخليط بالارتداد بعد اضافة قطرات من حمض الكبريت المركز و بعض حصى $m_2=10,80~\mathrm{g}$. الخفان ، عند نهاية التفاعل نحصل على كتلة m=9,75 من الأستر ايثانوات البنزيل .

- 1. أكتب معادلة التفاعل و ما هي مميزاته؟
- $ilde{K}$. أحسب مردود التفاعل au_1 و ثابت التوازن $ilde{K}$
- 3. في نفس الظروف التجربية السابقة ، نعيد التجربة باستعمال $n_1=0.10\ mole$ من حمض الايثانوبك و $n_2=0,20~{
 m mole}$ في هذه الحالة . و ماذا تستنتج $n_2=0,20~{
 m mole}$
 - 4. ضع رسما لتقنية التسخين بالارتداد و ما الفائدة منه ؟

انتهى بالتوفيق و النجاح في البكالوريا رمضان کریم و تقبل الله صیامکم